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Minireview Article 
 

Undesirable Outcomes of Starvation Therapy of Cancer Require Special Attention 

 

 

 

Abstract. Nutritional starvation is a growing area of research into development of cancer 

therapy. Within the vast amount of positive research findings in starvation trials, there have been 

weaknesses in some of the systems utilized. Because such Such weaknesses are is taken as 

adverse points that must be considered and avoided, . these negativeNegative effects have been 

sought from the literature and presented in this work. This can then be a suitable guide for 

researchers and clinicians to either avoid situations where the growth of certain cancer cells can 

be enhanced by certain forms or modes of starvation, or their metastatic abilities be boosted. The 

intra- and extra-cellular mechanisms associated with these cellular enhancements have been 

demonstrated. Some negative interactions of starvation with chemotherapy have also been 

included. The understanding of these mechanisms can help avoid them for better clinical results 

and can open new avenues for research workers to find ways of dismantling them. 
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Introduction. Cancer therapy by cell starvation has been the focus of many researchers and 

oncologists with promising knowledge accumulating over the past few decades, with anticipation 

for it to become part of research leading to successful therapeutic intervention. In the course of 

research, a vast number of experimental starvation procedures tested have appeared in the 

literature [1-2]. However, the response to starvation was found to vary among various cancer 

cells whereby poorly differentiated and highly aggressive cells appeared to be more tolerant [3], 

and in the midst of the optimism of the effects of starvation on cancer, a number of methods used 

in the experimental starvation of various types of cancer failed to meet with the desired 

therapeutic targets, and may even have induced cancer cell tolerance instead. Hence, this brief 

communication has been prepared to give a comprehensive description of the reported 

experiments and research protocols with negative outcomes, in addition to an account of the 

molecular mechanisms adopted by cancer cells that render them tolerant or lead to non-

anticipated results. Such information may stand as guidelines for starvation research into either 

avoiding such protocols or finding solutions for them. 

Negative potentials in starvation therapy. Oncologists refrain from starving patients with 

malignancies, especially children, since nutrition is necessary to enhance their survival and 

alleviate the effects of cancer cachexia [4]. Experiments have shown that nutritional starvation 

may cause wasting of the body of rats with methylcholanthrene-induced sarcomas, allowing 

tumourstumors to grow [5]. Other experimental examples of the adverse effects of starvation 

were demonstrated when KHT fibrosarcoma cells and lymphoma cells had enhanced metastatic 

potentials upon induction of acidosis [6-7]. Furthermore, a reduction in the number of 

immunocompetent cells was described following a few days of starvation [8]. Moreover, and 

unlike the anticipated effects, malignant transformation would, at times, take place following 

long-term starvation stress, possibly due to chromosomal instability that may yield cells with 

even more malignant phenotypes [9-10]. Hence, chemical initiation of hepatocellular carcinoma 

in rats was followed by accelerated development of the tumour when put under the stress of 

fasting-feeding cycles [11]. From metabolism points, the uptake of glucose and the synthesis of 

macromolecules by glucose-starved Wilms’ tumour cells is augmented by insulin [12]. A 

practical example of this is the suppression of the growth of Ehrlich ascites cells in mice with 

induced diabetes and starved for glucose. The suppressed Ehrlich ascites cells resume growth 

upon insulin administration pointing out the role of insulin in sustaining the metabolism and 
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survival of tumour cells [13]. Another well reported starvation potential that yielded unwanted 

results have been the adverse effects of glutamine deprivation on the growth of cancer cells [14], 

mainly due to compensatory utilization and synthesis of asparagine and other non-essential 

amino acids [15]. In some tumour types, p53 promotes the expression of SLC1A3, which 

enhances glutamate, glutamine, and nucleotide synthesis to rescue cell viability, in the absence of 

extraellularextracellular glutamine [16].  Similar controversies have been described, whereby the 

deficiency/ starvation for L-arginine may yield unexpected tumour growth, especially in patients 

with patients with arginine non-auxotrophic cancer types and those with the ability [17]. Another 

enhancement of glutamine depletion can be through the use glutaminase inhibitor or transporter 

inhibitor [18]. 

Mechanisms of cell survival under the starvation stress. A number of mechanisms have been 

described through which some cancer cells achieve a state of resistance to starvation. Works that 

employed hormonal therapies were initially met with some failures. Androgens or cytokines 

starvation can enhance the proliferation of prostate cancer cells especially following their 

increased expression of p300 [19]. Toll-like receptor 4 (TLR-4) positive prostate cancer cells can 

also overcome the starvation inhibition upon lipopolysaccharide (LPS) stimulation of the TLR 4 

[20]. Also, mediated by the p-53-activated p21, serine stringency enhances the shifting of some 

prostate cancer cells into glutathione production to combat reactive oxygen species [ROS] [21-

22]. 

In a similar mode, the breast cancer cell line MCF-7/BUS can resist estrogen starvation-induced 

apoptosis through a mechanism that involves GPR-78, and the level of its expression may serve 

as a marker for the responsiveness of breast cancer cells to estrogen manipulation therapy [23]. 

Mammary epithelial tumour cells have also been reported to use the serum-and glucocorticoid-

induced protein kinase (Sgk) to rescue their survival during episodes of serum starvation [24]. 

Colon cancer cells may develop resistance to glucose deprivation through the oncosuppressor 

protein, the homeodomain-interacting protein kinase 2 (HIPK2), the c-Jun NH2-terminal kinase 

activation or through the ATM/Chk2/p53 signalling pathway [25-26]. Colon carcinoma cells can 

also resist thymidine deprivation [27] possibly through a mechanism that resembles the 

persistence of a calcium-independent melanoma cell line in spite of thymidine deprivation [28]. 

Starved malignant glioma cells survive through glycolysis and accelerated respiration induced by 

Tp53 [29-30], and the recovery of the pancreatic adenocarcinoma cell line MiaPaCa2 is mediated 
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through the defensive mechanism of the Nupr1 [31]. Similarly, the increased expression of cl-1, 

a member of the bcl-2 family rescued immortalised mouse embryonic fibroblasts from the 

starvation stress [32]. 

It has been reported that hypoxia and glucose starvation may augment the invasiveness of the 

cancer cell line HepG2 cells, aided by the Akt/ARK5 system and the AMP-activated protein 

kinase-alpha which mediates the hypoxia-induced transforming growth factor-beta1 [33-34]. 

Clearly described has been the inhibition of proteasome formation in the tumourigenic cell line, 

MCF-7, leading to enhanced survival as such cells appear to acquire resistance to protein 

breakdown [35]. Amino acid starvation of MCF-7 cells was also found to induce the expression 

of cd24 mRNA which may play a role in the progression of breast cancer [36]. Another intra-

cellular mechanism described has been the CLIC4/mtCLIC, a chloride intracellular channel 

protein, which also inhibits autophagy and apoptosis upon starvation of glioma cells [37]. Under 

limited glucose levels, survival of cancer cells was improved by the increased expression of the 

purine synthesis intermediate, succinylaminoimidazolecarboxamide ribose-5' (SAICAR) and its 

interaction with phosphate pyruvate kinase isoform (M2PK M2) [38]. Thus, it was concluded 

that some cancer cells may benefit from autophagy induced by starvation since they can utilize 

the autophagy products as energy sources [39-40]. 

In addition to the few intra-cellular mechanisms mentioned above, a number of other 

mechanisms that maintain cancer cell survival in starvation have also been described. One 

mechanism that accompanied the glucose starvation stress has been the chaperone-epidermal 

growth complex formation that prevented the release of the epidermal growth factor receptor 

(EGFR) until the removal of the stress [41]. Another mechanism which enables malignant cells 

to survive glucose starvation and hypoxia has been the increase, persistence and selectivity of the 

expression of the vascular endothelial growth factor (VEGF) that maintains and induces 

angiogenesis [42-45].  Similarly, colon carcinoma cells utilize various MAPK pathways 

including stimulating extracellular signal-regulated kinases (Erk-1/2) that up-regulate of the 

VEGF mRNA [46]. 

 

Under-nutrition of HeLa cells increases glycolysis for ATP production through induction of 

reactive oxygen species (ROS) production and phosphorylation of AMP-activated protein kinase 

(AMPK) [41]. This mechanism appears to mimic the Warburg effect [48] and provides some 
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protection to growing cancer cells. And cancer cells under starvation stress can even utilize the 

mucin-1 ([MUC-1) oncoprotein to induce autophagy and reduce the effects of glucose 

deprivation-induced ROS [49]. Tumour cells also appear to resist starvation by blocking 

translation elongation through a mechanism lead by the eucaryotic elongation factor 2 kinase 

(eEFK-2) [50-51]. Moreover, the expression of wild type p53 in some cancer cells may confer 

the ability to inhibit starvation-induced autophagy [52]. It may well be mentioned that 

arachidonic acid or nordihydroguaiaretic acid [NDGA], a lipoxygenase inhibitor can rescue 

W256 carcinosarcoma cells of the monocytoid origin from apoptosis due to serum starvation 

[53]. Also, the tumourigenic DA breast cells have been shown to over-express the marker of 

metastasis, Ly-6, when put under stress of serum starvation or heat shock [54]. 

Glucose-starved leukaemia cells can be rescued by the early addition of inhibitors of signalling 

or anti-oxidants [55], emphasizing the effects of unnecessary use of anti-oxidants that may 

disrupt the oxidative-anti-oxidative homeostasis [56]. Similarly, insulinoma cells grown under 

glucose and amino acid starvation conditions resisted apoptosis, probably due to increased 

capability to stand oxidative stress [57]. In addition, autophagy of hepatocellular carcinoma cells 

was induced by hepatitis B x antigen or hypoxia and were relieved by nutrient starvation, an 

opposite beclin-1-mediated effect [58-60]. In addition, starvation of a number of human 

colorectal cancers and breast cancer cell lines appeared to induce the p21 inhibition, which was 

overcome by the anti-Bcl-2 agent, ABT-737 [61-62]. 

Fasting-re-feeding may enhance tumour development of colon cancer in a mitogenic fashion 

[63]. Furthermore, starved rats showed a potential for initiation of hepatic carcinogenesis 

following nitrosamine treatment, when followed by re-feeding [64]. All the above mechanisms 

have been summarised and displayed in tables 1 and 2. 

 

Conventional therapy and starvation. It has been reported that starvation may enhance the 

action of conventional cancer therapies, in what has been described as the differential stress 

syndrome (DSS) [65-66]. Nevertheless, the susceptibilities of various types of cancer to 

chemotherapeutic agents under various starvation regimens were found to vary greatly [67], and 

resistance to chemotherapy may be mediated by the starvation-induced multiple drug resistance 

gene-1 ([MDR-1) [68], or that some cell lines such as the KHT 35LI can generate variants 

resistant to methotraxate [69]. Glucose starvation has also not been favourable for cisplastin-
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induced apoptosis of the human epidermoid carcinoma cell line A431 [70]. The growth of liver 

carcinoma cells is not suppressed by 5-fluoro-uracil during glucose starvation [71].  

 

Discussion.  

Cancer therapy by starvation is certainly not a straight forward method that can make the 

impossible since failures are expected in its’ fight against cancer and cancer cells. Mechanisms 

that prevent starvation stress-induced apoptosis or from autophagy are being reported. These 

mechanisms must be considered in designing experimental or even clinical approaches to tumour 

starvation, especially that no conclusive evidence has been presented suggesting that dietary 

manipulations would give absolute benefit to cancer patients’ general health, or cause regression 

of tumours [72]. Furthermore, and whenever feasible, cancer cells can be tested prior to the start 

of any management protocols, to unveil any existing adverse mechanisms with potential survival 

enhancement. An example of such a proposal has been the levels of GPR-78 which may serve as 

a marker for the responsiveness of breast cancer cells to estrogen manipulation therapy [23]. In 

addition, nano-clustered cascaded enzymes that release glucose oxidase to deplete the cells off 

glucose and oxygen [73]. Regarding the immune system, the adverse effects reported earlier 

have been debated recently in scientific works and even in newspaper declarations and articles 

emphasizing the positive effects of fasting cycles through inducing stem cells to boost the 

immune system [74]. For its significance, this issue has recently been taken up by the general 

media [75-76].  

 

In conclusion, the cancer starvation therapy mode has been a major issue during the past years 

and has been extensively researched into, although published organized clinical trials have not 

been made available. In the midst of the euphoria of some advances in the topic, some lines are 

required to be drawn to avoid unnecessary failures. Such procedures would consider early 

recognition of modes of cancer cell survival. Knowledge of those may allow either avoiding 

them if possible by altering the starvation procedures, or rather intervention by methods such as 

cellular or genetic manipulations.  
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Table 1. The intra-cellular mechanisms that extend the survival of cancer cell lines during 

starvation. 

Cell type and effector 

manipulation 

Mechanisms of survival References 

Androgens or cytokines 

starvation of prostate cancer cells 

increased expression of p300 19 

TLR-4-positive prostate cancer 

cells under general energy 

starvation 

LPS stimulation of the TLR 4 20 

prostate cancer cells under serine 

stringency 

p-53-activated p21 21, 22 

Estrogen starvation-induced 

apoptosis breast cancer cell line 

[MCF-7/BUS] 

GPR-78 23 

Serum starvation of mammary 

epithelial tumour cells 

Sgk  24 

Amino acid starvation of MCF-7 

cells 

induce the expression of cd24 mRNA 

which may play a role in the 

progression of breast cancer 

36 

glucose deprivation of colon 

cancer cells 

HIPK2 or the ATM/Chk2/p53 

signalling pathway 

25, 26 

thymidine deprivation of colon 

carcinoma cells  

calcium-independent mechanism 27, 28 

Starved malignant glioma cells glycolysis and accelerated respiration 

induced by Tp53 [ 

29, 30 

the pancreatic adenocarcinoma 

cell line MiaPaCa2 

the defensive mechanism of the Nupr1  31 

immortalised mouse embryonic 

fibroblasts 

increased expression of cl-1 32 

hypoxia and glucose starvation 

of HepG2cancer cell line  

the Akt/ARK5 system and the AMP-

activated protein kinase-alpha which 

mediates the hypoxia-induced 

transforming growth factor-beta1  

33, 34 
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The tumourigenic cell line, 

MCF-7 

inhibition of proteasome formation 

leading to enhanced survival as such 

cells appear to acquire resistance to 

protein breakdown 

35 

Starved glioma cells the CLIC4/mtCLIC, a chloride 

intracellular channel protein, which 

also inhibits autophagy and apoptosis 

upon starvation 

37 

Cancer cells under limited 

glucose levels 

increased expression of SAICAR and 

its interaction with M2PK M2 

38 
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Table 2. The functional and extra-cellular mechanisms that enhance the survival of cancer cells 

in starvation. 

Cell type and effector 

manipulation 

Mechanisms of survival references 

malignant cells to survive 

glucose starvation and hypoxia 

VEGF that maintains and induces 

angiogenesis 

42-45 

Starved tumour cells blocking translation elongation through 

a mechanism lead by the eEFK-2  

50, 51 

Cancer cell starvation wild type p53 in may confer the ability 

to inhibit starvation-induced autophagy 

52 

glucose starvation stress of 

human epidermoid carcinoma 

A431 cells 

chaperone-epidermal growth complex 

formation that prevented the release of 

the epidermal growth factor receptor 

[EGFR] until the removal of the stress 

41 

colon carcinoma cells MAPK pathways including stimulating 

extracellular signal-regulated kinases 

[Erk-1/2] that up-regulate of the VEGF 

mRNA 

46 

Under-nutrition of HeLa cells increases glycolysis for ATP 

production through induction of ROS 

production and phosphorylation of 

AMPK 

47 

cancer cells under starvation 

stress 

utilizing the MUC-1 oncoprotein to 

induce autophagy and reduce the 

effects of glucose deprivation-induced 

ROS 

49 

serum starvation of W256 

carcinosarcoma cells of the 

monocytoid origin   

Rescued by arachidonic acid or 

nordihydroguaiaretic acid [NDGA], a 

lipoxygenase inhibitor 

53 

DA breast cells over-express the marker of metastasis, 

Ly-6 

54 

Glucose-starved leukaemia cells early addition of inhibitors of signalling 

or anti-oxidants 

55 
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glucose and amino acid 

starvation of insulinoma cells 

increased capability to stand oxidative 

stress 

57 

Induced autophagy of 

hepatocellular carcinoma cells 

Nutrient starvation, an opposite beclin-

1-mediated effect 

58-60 

Nutrient starvation of human 

colorectal cancers and breast 

cancer cell lines 

Induction of p21 inhibition 61, 62 

Fasting-re-feeding of colon 

cancer in  

A mitogenic effect or mode 63 

initiation of hepatic 

carcinogenesis following 

nitrosamine treatment in starved 

rats 

A mitogenic effect or mode 64 
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