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Abstract

Tuberculosis, an airborne infectious disease, remains a major threat to public health in Kenya. In this study,
we derived a system of non-linear ordinary differential equations from the SLICR mathematical model of
TB to study the effects of hygiene consciousness as a control strategy against TB in Kenya. The effective
basic reproduction number (Ro) of the model was determined by the next generation matrix approach. We
established and analyzed the equilibrium points. Using the Routh-Hurwitz criterion for local stability
analysis and comparison theorem for global stability analysis, the disease-free equilibrium (DFE) was found
tobe locally asymptotically stable given that Ry < 1.




Also by using the Routh-Hurwitz criterion for local stability analysis and Lyapunov function and LaSalle’s
invariance principle for global stability analysis, the endemic equilibrium (EE) point was found to be
locally asymptotically stable given that Ro > 1. Using MATLAB ode45 solver, we simulated the model
numerically and the results suggest that hygiene consciousness can help in controlling TB disease if
incorporated effectively.
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1 Introduction

Tuberculosis is a bacterial infection disease that is common and potentially fatal if not timely treated. It is
caused by the mycobacterium tuberculosis. Tuberculosis usually affects the lungs; it can also affect the brain,
the central nervous system, the lymphatic system, the kidneys, and spine.

TB is transmitted from one person to another through the air. When a person with lung TB coughs, sneezes,
speaks or spits, TB germs (bacterium) are propelled into the air. These germs enter into the respiratory system
through the air inhaled. Any uninfected individual inhaling the bacteria is possibly exposed to infectious
mycobacterium tuberculosis, An individual needs to inhale only a few of these bacteria to become infected.

Mathematical modeling is an important tool for a better understanding of the dynamics of infectious [1].
Modeling of tuberculosis was first carried out by Frost [2]. Since then, several researchers have continuously
researched on how tuberculosis can be reduced using mathematical models by incorporating interventions
such as treatment of tuberculosis-infected persons by using of drug chemotherapy [3], treatment of actively
and latently infected persons [4], health education (see [5], [6],[7]), therapy of tuberculosis transmission [8],
early treatment for latent patients and treatment of infective [9] and so on. Based on the result of these studies,
the researchers found that tuberculosis could be controlled.

Tothisend, we seek to investigate analytically the dynamics of tuberculosis by incorporating hygiene as a control
strategy in order to eradicate the disease.

2 Model Formulation

We formulate a model with total population N(t), which is divided into five classes: S(t)-Susceptible
individuals, L(t)-Latently Infected individuals, I(t)- Infectious individuals (Actively Infected individuals), C(t)-
Hygiene conscious individuals (Infectious individuals who have become hygiene conscious) and
R(t)- Recovered individuals with natural death rate p in all classes and TB related death rate J in Infectious
and hygiene consciousness compartments. People are recruited to Susceptible class at the rate A and become
Latently infected at the rate of I where § is the effective contact rate between susceptible and infectious
individuals. v(0 < v < 1) is the reduced effective contact rate between susceptible and infectious individuals
as a result of hygiene consciousness where v is the rate at which infectious individuals become hygiene
conscious. Latently infected individuals progress to infectious class at ¢ rate and these infectious individuals
recover at the rate = and others progress to hygiene consciousness class at the rate v. The hygiene conscious
Lr]dividuals recover at w rate. From the above description we have the following assumptions and flow
iagram;

Assumptions:

i The population birth and death rate occur at different rates. ii
Infectious individuals observe hygiene willingly.



iii Infectious individuals recover as result of effective treatment. iv
There is permanent immunity after recovery.
v All the newly born individuals join only susceptible class.

vi Individuals in infectious and hygiene Conscious classes die naturally and as result of TB infection
while those in other classes die naturally.

)
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Figure 1: Flow chart
From Figure 1 we have the following equations of the model are:
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3  Model Analysis

Positivity and boundedness of solutions

The state variables of the model represent classes of human population and therefore should be non-
negative for the model to be well posed. The model will make epidemiological sense where the feasibleregion
ispositively invariant. Allthesolutionsarenon-negativeand bounded inthe feasible region Q ={(S, L, I, C,R)
ER®:S>0;L,1,C,R>0;N <2}

Because the first four equations ofisystem (2.1) are independent of yariable R(t), we reduce the system by to
obtain;

‘(’j—f A~ (1 V)BIS — S

dL = (1 —v)BIS — (o +u)L
dt

dl = oL —-(v+a+d+pl
dt

dc =v-(w+d+nC
dt

3.1)



Existence of Equilibrium points
At the equilibrium point, the right hand side of the system (3.1) is equal to zero. Inthat;

A—Q-v)BIS —puS=0(1
—v)BIS — (6 + p)L =0

oL—(v+rx+o+p)l =
vl —(w+0+pn)C =0

(3.2)
For Disease Free Equilibrium point Eg, the disease is not present. Hence S=S,, L=0,1=0and
C = 0. Upon substitution of these (S=Sy, L=0,1=0and C =0) in (3.2), we obtain Sy = "
Such that E; = (*, 0, 0, 0)
Next, we mvestlgatle the existence of Endemic equilibrium point Ee(Se, Le, le, Ce) by substituting
S=Se, L=Le I =1, C=Cein (3.2) to get
- (1 - V)ﬂ[eSe - uSe= 0 (1
= V)BLeSe — (0 + WLe =0 0L, —
v+r+o+Wl=0vl, — (0w +
o+WC.=0
3.3)
then by solving for Se, Le, lcand C. we obtain
0 ) O
2 (1=v)poA—u(o+) (va+d+y)
o T=v)uap
ﬁe = Wo+) (v+a+5+p)—(1—v)BoA
a(1-v)A(c+H)
Ee © _ O
B le E =Ee [ (o) (v+z+d+p) —(1-v)BoA
C A=v)Blo+r)(vtr+o+)

@

H vu(or W) (vtr+o+u) —(1-v)vBoA H
A=V)plo+r) (v+a+o+p)(w+o+1)

The Basic Reproduction Number (Ro)

The basic reproduction number Ry is the average number of secondary infection cases arising from a typical
primary infection case in an entirely susceptible population. Using the next generatlon matrix approach by
Van den Driessche and Watmough [10], Ro is given by the spectral radius p(FV ! ) where F is the Jacobian
matrix of f;j at Eq, where f; contains terms that directly lead to new infections entering each compartment j
and V is the Jacobian matrix of v;j at Eo, where v;j is the rate of transfer of individuals into and out of
compartmentj. Thedisease compartmentsareL, | and C. Their equationsare;

AL = (1 —v)pIS — (o +uL

dt
dl = oL -(v+z+d+pl
dt

dC = v/ - (o+5+pC
dt

(34)



System (3.4) can be expressed as;

0 0 d O
o (L - v)pis (e +HL
0 o o 0
U=f—v; =0 0 _ _
di Y OEmrSTIE =%
& 0
We can see; (o +u)L
0 0 g
fi=p (l*v&BIS andvi= [ (v+z+5+p)l —oL |

[

. . . (w+6+pP)C—vI
The jacobian of fj at Eg is

0 0 1-v)BA O 0
F= 00 4 00

0 0 0
and that of vjat Eqgis
(0 +4) 0 0
v= e (vtr+d+p) 0 -

The determifant of V is givén by ; (0 + 6 +1)

det(Vo) = (e + W)(v+ 7+ 0 + W)(w + J + W) Therefore
1

(+H) 0 0 -
O
- R T 0
Vvi= () (oY) (romtotiy
v 1 M
Ty (H+OHU) (+O+H) (otory)

(o+p) (v+a+o+p) (w+d+U)

By definition, Ry = p(FV ™~ %). Where

E&ﬁ% H(+5+1) 0
Fv—le o 0 —=gr g
i 0 0 0
Therefore
Ro= Lmiomson)

4  Stability Analysis

In this section we will analyse local and global stability of the disease-free equilibrium and endemic
equilibrium of the system (3.1).

Local Stability of the Disease Free Equilibrium Point
In this section we study local stability of the disease-free equilibrium of the system (3.1).

Theorem 1. The disease-free equilibrium of the system (3.1) is locally asymptotically stable when the
reproduction number Ry < 1.



Proof. Evaluating the jacobian matrix of system (3.1) at E,, we have;

- (1=v)BA -
M 0 R 0
_0 (e + a—%sa .
JE)= B8 (0w  —(v+r+s+p) 8 i
o =00 0 v —(w + 5 +)

From J(E,) the determinant is given by

Detd(Eo) = —u[—(c + )(v + 7+ 5+ W(e + 3 + p) + o(w + 5+ p) 4]
and the trace is given by

trQ(Eo)=—H—(c+ ) —(v+z+ o+ ) —(0+d+ 1)

Since all the parameters are positive, it can be seen that the tr(J(Ey) < 0 and Det(J(Eo) > 0 when

Ro< lie (o +p)(v +m +6 +p) > =2t

Applying Routh-Hurwitz criterion for necgssary and sufficient conditions as in Enagi et al. [11], the
(1:haracteristic polynomial has all roots with negative real part since tr(J(Eo)) < 0 and Det(J(Eo)) > 0 when Ro<
Thus, by Routh-Hurwitz criteria, the disease-free equilibrium is locally asymptotically stable when

Ro<1 O

u

Global Stability of the Disease Free Equilibrium Point

Now we use comparison theorem as in [12] , to prove the global stability of DFE

Theorem 2. The disease-free equilibrium of the system (3.1) is glocally asymptotically stable when the
reproduction number Ry < 1.

Proof. Using the corr&parigogtheorem in [12] we rewrite the disease compartments as
0 0

a L (1 — v)BI(So — S)
0 0
U=(F-vYUI1C .0
a 3
att

dt
Where F and V,are defined in section (3.2.4)
Since S So=" Wt > 0, it follows that

0 O 0
i ¢
JF-v) D
dl
e 0 0
_ 1-v)BA -
Where F— V=" (a;u) —(v+m+0+) 8 0
0 -v —(w + 0 +L)

The characteristic equation is given by

(o +W)+A)((v +7 +0 + W)+ A) (0 +0 +) +A) +o((@ +6 +p) + )R =0
Which upon expansion gives

(0 +6 + W) +A)[A° +aid +az] =0 (4.2)

where

a=(c+W+(+a+itp)

8= (o + P)(v+ 7+ 5+ p) — (0

From equation (4.1) it is clear that one df the eigenvalues is —(w +0 +}1) and other eigenvalues are given by the
roots of

Pral+a,=0 4.2)
By using Routh Hurwitz criterion, equation (4.2) has roots with negative real part if a;a2> 0. We can see
that a; > 0, this implies that for a;a, > 0 to be satisfied, a, > 0.



Clearly a,> 0when Ry< li.e (¢ +)(v +7 +0 + ) > L=28h

SincewehaveshownthatF— VhasnegatlveelgenvalueswhenR0<1 |tmeansthat(L(t) 1(t),C(t1))—(0,0,0) as t
—— 0, Usmg comparison theorem, it follows that (L(t), I(t), C(t)) — (0, 0,0) and

S(t) — ”as t —— 00 (S(t), L(1), I(t), C(t)) —Eg
Therefore the disease free equilibrium is globally asymptotically stable when Ry < 1.

Local Stability of the Endemic Equilibrium Point

Theorem 3. The endemic equilibrium point (Ee) of system (3.1) is locally asymptotically stable when Ro> 1

Proof. We prove the theorem by determining if there exist negative eigenvalues when Ry > 1. We start by
evaluating the Jacobian matrix of system (3.1) at the endemic equilibrium point. Thus

-(1- 0 0

I Vw)ﬁ“’le SGaI) o) 0
J(Ee)—7 o _(V+7T+5+U) 0 g

O 0 v —(w + 0 +)

y(;le see that —(w + 0 + ) is one of the eigenvalues, the rest can be determined by reducing J(E,)
I (6 SRV VAT 0 ~(1-V)pS,
WEI= o @t o) @S
0 o —(v+r+o+)

From J;(E,),

tr(Ju(Ee)) = —((1 —v)Bl +3u+ o+ v+ 7w+ 0)

Det(Jl(Ee)) - [(1 _ V)ﬂl + ]{Zu(o"'“u)(v+7r+§+u) 2(1- V)BGA}

Clearly Det(J1(Ee)) > 0 for Ro> 1 i.e (1 — v)BoA > (o + P)(v + + & + )

Applying Routh-Hurwitz criterion for necessary and sufficient conditions as in Enagi et al. [11], tr(J.(E¢))
< 0 and Det(J1(E:)) > 0 when Ry > 1. Implying that all eigenvalues of J,(E.), have negative real part
when Ry> 1. Thus E; is locally asymptotically stable when Ry> 1. =

Global Stability of the Endemic Equilibrium Point

We study the global asymptotic stability of the endemic equilibrium using LaSalles invariance principle [13].
Theorem 4. The Endemic Equilibrium Point E, of the system (3.1) is globally asymptotically stable if Rq > 1.

Proof Wea ly [13] approach to ove Iobal stability of Ee. Consider the following Lyapunov functi
o ng£ ] Pp R/I g oal )yP(IieIn o Clg yp) unction

The derivative of G is ; § e 'f <
Idﬁ%;t Wwe ;@ﬁute%(lu _&)an%td:f om J)l)gte‘#] (9&3) to_?ve
dG — ( _ S ) (
T 3 — (1 =v)BIS —pS) + M ( 1 =v)BIS — (e + WL+
¢ 1- —8§A ol - ce f(v] (w +5+n)C) (43)

prr+o+)H+Q 1-



At endemic equilibrium, system (3.1) become;

A=(1—v)BLSe +USe

(0 + 1) = i_lﬂs
(v+n+a‘+u):':—9
vl
(@+to+W)=
Substituting (4.4)in (4.3), we get;
C D
8= - - vpteserus - - vps - ps)
C D) _
+M 171‘?_ [@-wps - E 'ie"]
C Ie) oLl C Ce
+P 17 ol - ]+Q 1-7° vl
Equation (4.5) can be written as
dG C D C D
FER M+ ¢y @ovpss 1t
+M(1- v),BI e 1- l(wy X)
D x

+Pole 1— (x—y)+Qvl C 1)
1 e 1-7 (-2
4

y
wherew =5  x=L ,y—' andz -
Further e%uatlonz(4 6) can be wrltten as ‘
Ser +f(w, x, Y, z)
dt - s
Where
_Go9) G 1)
fWwxyz)=1—" Q- V)pLSe— 1 """ (1 —v)wyplSe
w
_ e o Viy,
+M(1 v),gl S (1+wy — x;
To dgtermlne M, P and Q, set ﬁ@g&@ﬂmeﬁ% of wy, X)andg olﬁgilluat%n 4.7) %aual to zero. Thus
we obtain
M (1 — v)BLSe=0
_PO'Le :0
_QVIQ :O

let M=1, solving for P and Q, we have;

(1 — v)BILSe (1 —v)BSe
P= olLe Q= v

@]

vle
d,

(1 — v)wypISe

(4.4)

(4.5)

(4.6)

@.7)



Substituting for M, P and Q ingquatiog (4.7), we obtain C

fw,x,y,2)= 1- 1 1-v)Bl S -
w

+(1—v)BI S (4+wy —

1_
wy

7)()

1
—W 1-vwypl S,

+(1—-Vv)BI S (1+x X Ty)+(1A-v)BI S (1+y y
ee - - e e J— —
y z
‘Which upon sim llﬁcatlon ives
f(wxlil,z)—p ),gjgs(4+y_y_z_x_,1_,wy)
z y w

Using geometrlc mean inequality , we obtain

Lz +X 40 +""¥ Yy >4

Thus f (w, X, y, ) <0. Hence %
le ,C = C.. Therefore, using LaSalle’s invariance principle,the endemic equilibrium

L=Lel=

<

0 in Q The equality

point of the system (3.1) is globally asymptotically stable.

5

Numerical Simulation

2)

OlT? =0 iff w=x=y=z=1 and S = S,

We carry out numerical simulations of the model (3.1), using MATLAB ode45 solver. The parameter values
used are presented in Table 1. Simulation results are presented in Figures (a) to (d).

Parameter symbdgbl¢ 1: Parargefirevalues of the model Source
A 8.7 x10 °/day CIA (2014)
7.0 x10°/day CIA (2014)

Figurg (a) is graphicgl representation indica S of population clas absence of fygiene
co%sc n&nq)nmqg Itpra e Qgpn that sug rpntlhlﬂlﬁ(;ﬂa! hpraﬁc =pthpv are mfﬁﬁlr‘lﬁmfprtmm ind \X%uals
whereps latently Infected and Infe Ctiol§° |8d0/|>etu1@ fdiagse rapﬂﬂwmol apm‘@ﬂmtd)(m and 3400
respegtivety therstart dectining and venlgd%g gL? ZET0 . FIgUTE ) = ends of
population classes in the presence hygiene ¢ 0 igure mber of
Iatgn}t y Infected and wfectlous |nd|V|duaIs @qeas] @f&@jﬁ@gytaln pomt and then Etgrwﬁ;ﬂmlng, |mply|ng btggto‘é
- . IN) llUL CUC\./UVC 11T quLlUlllll UoTIU Ul71, UlitT \b} II. odair UC U, U anl
latently Infected anddnfectious m&gwldualaaxz Qs t rtain|point and KA&a&m‘nmq but the peaks
of the[two graphs in ﬁ)gure (c) are a Hit Iower@sgor‘n@rq_j to thosg in Figure (o)

(d) showsthatfors=0.9;thenumbers-ofall pepulation-elassesfall- off-and-ev 0. This

suggest that effective hyglene consciousness is sufficient in controlling TB epldemlc. The infectious
individuals can observe hygiene through cough etiquette, ensuring that windows are open while in congested
area and not spitting everywhere. Also, hygiene can be observed through proper cleaning and sterilization of

hospital equipments.
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6 Conclusion

A mathematical model of TB which captures the effects of hygiene consciousness is formulated. We proved
the positivity of the solutions and determined the equilibrium points. We carried out stability analysis of the
model and it showed that the disease-free equilibrium point is both locally and globally asymptotically stable
given that Ry < 1, implying that TB can be eliminated from the population. Whereas the endemic equilibrium
point is both locally and globally asymptotically stable given that Ro> 1, implying that TB will eventually be
able to invade the population but its transmission levels can be kept at manageable levels in the presence of
hygiene consciousness. The obtained numerical simulations results suggest that in the absence of hygiene
consciousness TB disease could invade the population while in the presence of effective hygiene
consciousness, the development of TB disease is slowed down. Hence this implies that there is a need to
embrace hygiene consciousness as a control measure of TB.
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